Differential expression of AT1 receptors in the pituitary and adrenal gland of SHR and WKY.
نویسندگان
چکیده
The renin-angiotensin (ANG) system has been implicated in the development of hypertension in spontaneously hypertensive rats (SHR). Because SHR are more susceptible to stress than normotensive Wistar-Kyoto rats (WKY), we measured the mRNA expression of AT1A, AT1B, and AT2 receptors in the hypothalamo-pituitary-adrenal (stress) axis of male SHR in comparison to age-matched WKY at prehypertensive (3 to 4 weeks), developing (7 to 8 weeks), and established (12 to 13 weeks) stages of hypertension. AT1A receptor mRNA was mainly expressed in the hypothalamus and adrenal gland. AT1B receptor mRNA was detected in the pituitary and adrenal gland. AT2 receptor mRNA was prominent only in the adrenal gland. When compared with WKY, SHR showed increased AT1A receptor mRNA levels in the pituitary gland at all ages in contrast to reduced pituitary AT1B receptor mRNA levels. In the adrenal gland of SHR, AT1B receptor mRNA levels were decreased at the hypertensive stages when compared with WKY. The reduced expression of adrenal AT1B receptor mRNA was localized selectively in the zona glomerulosa by in situ hybridization. No differences were observed between WKY and SHR in the expression of hypothalamic ANG receptors. ANG significantly increased plasma levels of adrenocorticotropic hormone (ACTH) and corticosterone in dexamethasone-treated SHR but not in WKY. The aldosterone response to ANG was similar in SHR and WKY. Our results suggest a differential gene expression of AT1A and AT1B receptors in the hypothalamo-pituitary-adrenal axis of SHR and normotensive WKY and imply the participation of AT1 receptors in an exaggerated endocrine stress response of SHR to ANG.
منابع مشابه
Perturbation of D1 dopamine and AT1 receptor interaction in spontaneously hypertensive rats.
The dopaminergic and renin-angiotensin systems interact to regulate blood pressure. Because this interaction may be perturbed in genetic hypertension, we studied D1 dopamine and AT1 angiotensin receptors in immortalized renal proximal tubule (RPT) and A10 aortic vascular smooth muscle cells. In normotensive Wistar-Kyoto (WKY) rats, the D1-like agonist fenoldopam increased D1 receptors but decre...
متن کاملDifferential effects of angiotensin II type-1 receptor antisense oligonucleotides on renal function in spontaneously hypertensive rats.
The effect of selectively decreasing renal angiotensin II type 1 (AT1) receptor expression on renal function and blood pressure has not been determined. Therefore, we studied the consequences of selective renal inhibition of AT1 receptor expression in normotensive Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) in vivo. Vehicle, AT1 receptor antisense oligodeoxynucleotides (AS...
متن کاملInteraction of angiotensin II type 1 and D5 dopamine receptors in renal proximal tubule cells.
Angiotensin II type 1 (AT1) receptor and D1 and D3 dopamine receptors directly interact in renal proximal tubule (RPT) cells from normotensive Wistar-Kyoto rats (WKY). There is indirect evidence for a D5 and AT1 receptor interaction in WKY and spontaneously hypertensive rats (SHR). Therefore, we sought direct evidence of an interaction between AT1 and D5 receptors in RPT cells. D5 and AT1 recep...
متن کاملAltered AT1 receptor regulation of ETB receptors in renal proximal tubule cells of spontaneously hypertensive rats.
The renin-angiotensin and endothelin systems regulate blood pressure, in part, by affecting renal tubular sodium transport. In rodents, ETB receptors decrease proximal tubular reabsorption, whereas AT1 receptors produce the opposite effect. We hypothesize that ETB and AT1 receptors interact at the receptor level, and that the interaction is altered in spontaneously hypertensive rats (SHRs). In ...
متن کاملAT1 receptor blockade regulates the local angiotensin II system in cerebral microvessels from spontaneously hypertensive rats.
BACKGROUND AND PURPOSE Blockade of angiotensin II AT1 receptors in cerebral microvessels protects against brain ischemia and inflammation. In this study, we tried to clarify the presence and regulation of the local renin-angiotensin system (RAS) in brain microvessels in hypertension. METHODS Spontaneously hypertensive rats (SHR) and Wistar Kyoto (WKY) controls were treated with an AT1 recepto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension
دوره 41 4 شماره
صفحات -
تاریخ انتشار 2003